Myofibroblast Differentiation and Enhanced Tgf-B Signaling in Cystic Fibrosis Lung Disease
نویسندگان
چکیده
RATIONALE TGF-β, a mediator of pulmonary fibrosis, is a genetic modifier of CF respiratory deterioration. The mechanistic relationship between TGF-β signaling and CF lung disease has not been determined. OBJECTIVE To investigate myofibroblast differentiation in CF lung tissue as a novel pathway by which TGF-β signaling may contribute to pulmonary decline, airway remodeling and tissue fibrosis. METHODS Lung samples from CF and non-CF subjects were analyzed morphometrically for total TGF-β1, TGF-β signaling (Smad2 phosphorylation), myofibroblast differentiation (α-smooth muscle actin), and collagen deposition (Masson trichrome stain). RESULTS TGF-β signaling and fibrosis are markedly increased in CF (p<0.01), and the presence of myofibroblasts is four-fold higher in CF vs. normal lung tissue (p<0.005). In lung tissue with prominent TGF-β signaling, both myofibroblast differentiation and tissue fibrosis are significantly augmented (p<0.005). CONCLUSIONS These studies establish for the first time that a pathogenic mechanism described previously in pulmonary fibrosis is also prominent in cystic fibrosis lung disease. The presence of TGF-β dependent signaling in areas of prominent myofibroblast proliferation and fibrosis in CF suggests that strategies under development for other pro-fibrotic lung conditions may also be evaluated for use in CF.
منابع مشابه
Metformin attenuates lung fibrosis development via NOX4 suppression
BACKGROUND Accumulation of profibrotic myofibroblasts in fibroblastic foci (FF) is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis (IPF) pathogenesis, and transforming growth factor (TGF)-β plays a key regulatory role in myofibroblast differentiation. Reactive oxygen species (ROS) has been proposed to be involved in the mechanism for TGF-β-induced myofibroblas...
متن کاملRegulation of myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by adrenomedullin.
Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) is characterized by the expression of smooth muscle α-actin (SMA) and extracellular matrix proteins. We and others have previously shown that these changes are regulated by protein kinase A (PKA). Adrenomedullin (ADM) is a vasodilator peptide that activates cAMP/PKA signaling through the calcitonin-receptor-like recep...
متن کاملNormal Human Lung Epithelial Cells Inhibit Transforming Growth Factor-β Induced Myofibroblast Differentiation via Prostaglandin E2
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with very few effective treatments. The key effector cells in fibrosis are believed to be fibroblasts, which differentiate to a contractile myofibroblast phenotype with enhanced capacity to proliferate and produce extracellular matrix. The role of the lung epithelium in fibrosis is unclear. While there is evidence...
متن کاملA New Antifibrotic Target of Ac-SDKP: Inhibition of Myofibroblast Differentiation in Rat Lung with Silicosis
BACKGROUND Myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, is a key process in organ fibrosis, and is induced by TGF-β. Here we examined whether an anti-fibrotic agent, N-acetyl-seryl-aspartyl-lysylproline (Ac-SDKP), can regulate induction of TGF-β signaling and myofibroblast differentiation as a potential key component of its anti-fibrotic mechanism in...
متن کاملPleural mesothelial cell differentiation and invasion in fibrogenic lung injury.
The origin of the myofibroblast in fibrotic lung disease is uncertain, and no effective medical therapy for fibrosis exists. We have previously demonstrated that transforming growth factor-β1 (TGF-β1) induces pleural mesothelial cell (PMC) transformation into myofibroblasts and haptotactic migration in vitro. Whether PMC differentiation and migration occurs in vivo, and whether this response ca...
متن کامل